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Outline

Outline

1. Revisit triangulating a link
complement.

2. Inside view of a hyperbolic
3-manifold.

Aim: Explicit embedding of hyperbolic triangulation into from link
diagram.
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Triangulating a link complement

1. Warm-up: two bridge link complement (ideal).

2. Generic link complement (ideal and finite vertices).

3. Cases where this triangulation 2 admits a hyperbolic structure.

4. Simplification/removing finite vertices.
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Two bridge links

An example two bridge knot
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Two bridge links

Sakuma-Weeks triangulation for two bridge link

trivial tangle

trivial tangle
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Two bridge links

Cubes with diagonals
Easier to visualize: use cubes with diagonals (become tetrahedra of
layered triangulation when crushing vertical faces).

Matthias Goerner

Raytracing in hyperbolic 3-manifolds and link complements



Outline Triangulating a link complement Inside view of a hyperbolic 3-manifold

Two bridge links

Two bridge links

http://unhyperbolic.org/icerm/
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Generic link

Link diagram
Dual to link diagram: 2-complex of topological squares, each
containing exactly one crossing.
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Generic link

Crossing in a box
Replace each topological square by box tangle.
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Generic link

Pinch box

of K, we have a decomposition of the space M = S3 \ ⌫ (K [ {p, q}) into blocks each of
which is a cube with two cylinders (whose core is the knot) removed. See Figure 2. Note
that M is a 3-manifold with 3 boundary components (two spheres and a torus) whose
interior is homeomorphic to S3 \ (K [ {p, q}). Now consider two quadrilaterals Q1 and
Q2 in each block as in Figure 2 and collapse them horizontally so that their vertical edges
are respectively identified. We call the resulting object a pinched block.

Q1

Q2

x1

x7
ex6

ex2

x4 x6x3

x2
x5

ex4

ex3

ex5

Figure 2: A pinched block

On the other hand, a pinched block can also be obtained from a truncated octahedron
by identifying two pairs of edges as in Figure 3 (right). Therefore, one can obtain M by
gluing truncated octahedra, and it thus follows that the interior of M can be decomposed
into ideal octahedra (one per crossing). We denote by O this octahedral decomposition
of S3 \ (K [ {p, q}). It is due to Dylan Thuston [9] (see also [10]).
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Figure 3: A truncated octahedron

3.2. The Hikami-Inoue cluster variables

The edges of an ideal octahedron (as in Figure 3) correspond to vertical edges of a
block as in Figure 2 (left). We label these edges by x1, · · · , x7, ex1, · · · , ex7 as in Figure

7

Source: Cho, Yoon, Zickert, On the Hikami-Inoue conjecture.
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Generic link

Pinched box
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Generic link

Pinched box can be split into four tetrahedra
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Generic link

Isotoped neighbors

Isotope neighbors to fill gap from pinching.
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Generic link

Piece for alternating link
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Generic link

Isotopy for non-alternating links
Temporarily straighten segment of link.
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Generic link

Isotopy for non-alternating links
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Generic link

Isotopy for non-alternating links
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Geometric structure without removing finite vertices

Geometric structure without removing finite vertices

For the following 23 knots, Orb was able to find a geometric
structure on the triangulation without the finite vertices removed:

K4a1 K10a89 K11n157 K12a868
K8a12 K11a266 K11n178 K12a875
K8a15 K11a269 K12a1019 K12a888
K9a29 K11a288 K12a1152 K12n837
K9a37 K11a302 K12a1188 K12n877
K10a121 K11a350 K12a1251
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Simplification of triangulation

Simplification of triangulation

SnapPy simplifies/removes finite vertices by:

1. Performing 2-3/3-2 moves.

2. 2-0 move (fold two tetrahedra about an edge of order 2).

3. Ungluing a face and gluing in a “triangular pillow with
tunnel”.
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Simplification of triangulation

2-3 move
PL-homeomorphism between triangulations straightforward.

TRAVERSING THREE-MANIFOLD TRIANGULATIONS AND SPINES 7

4-1 move. Then there is the 2-3 move, which is performed on two different tetrahedra meeting in a
triangular face. The 2-3 move deletes this face by introducing a new edge connecting the opposite
corners of the tetrahedra. Its inverse is the 3-2 move. Each of these moves changes the number of
tetrahedra, faces and edges. However, the 2-3 and 3-2 moves do not affect the number of vertices
in the triangulation. The 1-4 and 4-1 moves only change the number of material vertices, but not
the number of ideal vertices. One may again imagine all of these moves as swapping subsets of
tetrahedra on the boundary of a 4–dimensional simplex!

Figure 6. The 1-4 and 2-3 moves.

The use of bistellar moves in the work of Pachner has its roots in the stellar moves used by
Alexander [4] and Newman [56]. The bistellar moves are equivalent to moves on a dual structure,
called a spine, due to Matveev [47]. Classically, the stellar and bistellar moves were only defined,
and results involving them only proved, for special types of triangulations that are less general than
the ones we defined above. Vertices, edges, triangular faces and tetrahedra are called simplices, and
one indicates the dimension d of a simplex by saying that it is a d–simplex. A simplex contained
in another simplex � is said to be a face of �. A simplicial triangulation requires any two simplices
to meet in either a face or not at all. A combinatorial triangulation has the additional requirement
that the manifold structure is completely evident from the combinatorics — this is technically
made precise by requiring that the so-called link of every simplex is a sphere. For surfaces and
3–dimensional manifolds, every simplicial triangulation is combinatorial, and the distinction is only
of relevance in higher dimensions (which are of no concern for this paper). Our triangulations are
sometimes called singular or semi-simplicial in the literature. They can be turned into simplicial
triangulations by performing at most two barycentric subdivisions. We define these in §2.5 and
show that barycentric subdivision can be achieved using the bistellar moves 1-4, 2-3 and 3-2. We
also show that stellar moves can be achieved using these moves—the caveat here is that one stellar
move may turn into an arbitrarily long sequence of bistellar moves. In this sense, there are infinitely
many stellar moves but only four bistellar moves. This discussion connects our triangulations to the
general theory of simplicial or combinatorial triangulations via bistellar moves, and we therefore
use the word triangulation throughout this paper without further qualification. We also always
allow the implicit use of isotopy — so our statements are really statements about triangulations up
to isotopy, rather than fixed triangulations. We summarise this discussion in the following theorem.

Theorem 1.1 (Alexander, Newman, Moise, Pachner). The set of all triangulations of a closed
three-dimensional manifold M is connected under 1-4, 2-3, 3-2 and 4-1 moves.

An excellent account of the history and proof of a similar result that holds in all dimensions was
recently given by Lickorish [42]. A more general definition of triangulations, and a different set of
moves, is used by Ludwig and Reitzner [43].
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Simplification of triangulation

2-0 move

The 2-0 move removes the red order-2 edge and identifies the two
green edges and the faces spanned by the green and black edges
(pairwise).

From now: use symmetry and only look at one half.
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Simplification of triangulation

2-0 move

Need to consider a neighborhood of the faces that get identified.

Thanks to Henry Segerman and Saul Schleimer.
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Simplification of triangulation

Gluing in a “triangular pillow with tunnel”
TRAVERSING THREE-MANIFOLD TRIANGULATIONS AND SPINES 25
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Figure 27. The arch is harder to see in the dual picture of the triangulation. Here we show the shape

of the single tetrahedron. First we identify the two edges marked with a single arrow, and separately the

two edges marked with a double arrow. This produces the middle diagram: a shape with two triangular

faces on the exterior, and two cone-shaped faces on the interior. Second, we glue the two interior faces

together, which also identifies the two edges with arrows. The result has an exterior consisting of two

triangular faces, with two of the vertices of these triangles identified with each other.

find that the transverse coorientation also points from B into A0, then we find that A = B and
B = A0, so we reach the same contradiction.

Breaking symmetry, suppose that A is homeomorphic to a ball. Since A and A0 are distinct,
the result of connecting together A and A0 is homeomorphic to A0. The topology of the other
complementary regions is unchanged. ⇤
5.2. Building an arch-with-membrane. Using 2-3 and 3-2 moves, we can make an arch-with-
membrane on any edge of a spine which has more than one vertex. The moves are applied in a
neighbourhood of a vertex of the spine incident to the edge. This is illustrated in Figure 28.

5.3. Implementing a 1-4 move followed by introducing an arch using 2-3 and 3-2 moves.
Similarly, we cannot perform a 1-4 move using only 2-3 and 3-2 moves. However, we can recreate
the result of performing a 1-4 move followed by inserting an arch using 2-3 and 3-2 moves. This is
achieved by constructing an arch-with-membrane, then applying two 2-3 moves. See Figure 29.

6. Details in the main proof

The point of time has come where we cannot further postpone diving into the intricacies of the
proof of the main theorem. This section explains how we position and, if required, move arch
marks, and how we connect waypoint triangulations with 2-3 and 3-2 moves. The overall aim is to
preprocess the triangulations in such a way, that all that remains is a step that is easy to describe
but requires work to justify in detail: sweeping a membrane across a ball, from one arch to another.
This very last step is given in §7.

6.1. Arch mark positioning. First, we describe where the arch mark is on each of T0
2 through

T0
n�1. Then we describe sequences of 2-3 and 3-2 moves to take T1 to bT0

2, to take each waypoint
triangulation bT0

i to the subsequent bT0
i+1, and to take bT0

n�1 to Tn.

Note: Figure shows one tetrahedron, SnapPy uses two.
Source: Rubinstein, Segerman, Tillman, Traversing Three-Manifold
Triangulations and Spines.
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Techniques

Technique 1: Draw (rasterize) universal cover

Inside View Universal cover

I implemented this using (fixed-function pipeline) OpenGL in 2000
for regular tessellations.
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Techniques

Technique 2: Raytracing

Turner Whitted, An Improved Illumination Model for Shaded
Display, 1979.
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Techniques

Technique 2: Raytracing

11

2

2

Implemented as GLSL shader in OpenGL 3.2 for SnapPy.
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SnapPy Demo

Inside view of a hyperbolic 3-manifold

Available in one of the next versions of SnapPy:

M = Manifold("m015")

# Might change to .fly()

M.inside_view() # For triangulation

M = Manifold("m003(-3,1)")

d = M.dirichlet_domain()

d.inside_view() # For Dirichlet domain

Thanks to: Henry Segerman et al for initial shader.
Marc Culler for modern OpenGL support on Mac and Linux.
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Outlook

Technique 1 still has applications

Applications for illustration:

1. Prepare objects (such as geodesic) for raytracing.

2. 2d picture or 3d prints of tessellation by fundamental domains.

Applications for hyperbolic 3-manifolds:

1. Compute length spectrum.

2. Compute maximal cusp area matrix (aij): neighborhoods of
cusp i and j are disjoint if and only if the product of their
areas ≤ aij (in writing, Goerner).
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Outlook

Technique 1: Bugs

Double drawing in my first OpenGL implementation: z-Fighting.
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Outlook

Technique 1: Challenges

Challenges:

1. Enumerate each tile only once.
Easiest: Check whether current tile is ε-close to any previous
tile using some tree/hash table structure.

2. Determine when enough tiles have been found.
Easiest: Use some cut-off size/distance.

This is what Curtis McMullen’s lim is doing.
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Outlook

Technique 1: Implementations

Challenges:

1. Enumerate each tile only once.
Elegant: Finite state machine, e.g., Jeremy Kahn’s Circle
Limits (akin to word acceptor of automatic structure).

2. Determine when enough tiles have been found.
Easiest: Use cut-off distance.
Note: This is correct if using Dirichlet domain (used by, e.g.,
SnapPea kernel for length spectrum).
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Outlook

Technique 1: Verified Implementation

Challenges:

1. Enumerate each tile only once.
Easiest: Check whether current tile is ε-close to any previous
tile using some tree/hash table structure.
Verified: Let ε be radius of a ball contained in fundamental
domain. Use interval red-black tree.

2. Determine when enough tiles have been found.
Verified (without Dirichlet domain): Ensure all
external/unglued faces outside of ball to be tessellated.

Goerner, Haraway, Hoffman, Trnkova, Verified length spectrum (in
progress).
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