Triangulating a link complement 0000 0000000000 0 00000 Inside view of a hyperbolic 3-manifold 000 00000

<ロ> (日) (日) (日) (日) (日)

2

Raytracing in hyperbolic 3-manifolds and link complements

Matthias Goerner

November 13th, 2019

Matthias Goerner

Triangulating a link complement 0000 000000000 0 00000

Inside view of a hyperbolic 3-manifold 000 00000

Outline

Outline

- 1. Revisit triangulating a link complement.
- Inside view of a hyperbolic 3-manifold.
- Aim: Explicit embedding of hyperbolic triangulation into from link diagram.

Triangulating a link complement

Inside view of a hyperbolic 3-manifold ooo ooooo

Triangulating a link complement

- 1. Warm-up: two bridge link complement (ideal).
- 2. Generic link complement (ideal and finite vertices).
- 3. Cases where this triangulation 2 admits a hyperbolic structure.
- 4. Simplification/removing finite vertices.

Triangulating a link complement ●000 ○00000000 ○ ○0000

Inside view of a hyperbolic 3-manifold 000 00000

イロン イロン イヨン イヨン

= 990

Two bridge links

An example two bridge knot

Matthias Goerner

Triangulating a link complement ○●○○ ○○○○○○○○○○ ○ ○○○○○

Inside view of a hyperbolic 3-manifold 000 00000

2

Two bridge links

Sakuma-Weeks triangulation for two bridge link

Matthias Goerner

Triangulating a link complement oooo oooooo ooooo ooooo Inside view of a hyperbolic 3-manifold 000 00000

Two bridge links

Cubes with diagonals

Easier to visualize: use cubes with diagonals (become tetrahedra of layered triangulation when crushing vertical faces).

Matthias Goerner

Inside view of a hyperbolic 3-manifold 000 00000

Two bridge links

Two bridge links

http://unhyperbolic.org/icerm/

- ▲ ロ ト ▲ 聞 ト ▲ 置 ト ▲ 置 - め � �

Matthias Goerner

Outline	

Generic link

Link diagram

Dual to link diagram: 2-complex of topological squares, each containing exactly one crossing.

Matthias Goerner

Generic link

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

Crossing in a box

Replace each topological square by box tangle.

(ロ・・部・・ボン・ボン・ボー シック

Matthias Goerner

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

<ロ> <同> <同> < 回> < 回>

2

Generic link

Pinch box

Figure 2: A pinched block

Source: Cho, Yoon, Zickert, On the Hikami-Inoue conjecture.

Matthias Goerner

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold 000 00000

Generic link

Pinched box

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Matthias Goerner

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

Generic link

Pinched box can be split into four tetrahedra

Matthias Goerner

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

Generic link

Isotoped neighbors

Isotope neighbors to fill gap from pinching.

▲口 > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

Matthias Goerner

Triangulating a link complement ○○○○ ○○○○○●○○○ ○ ○○○○○

Inside view of a hyperbolic 3-manifold 000 00000

Generic link

Piece for alternating link

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ―臣 ― 釣んで

Matthias Goerner

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

Generic link

Isotopy for non-alternating links

Temporarily straighten segment of link.

Matthias Goerner

Triangulating a link complement ○○○○ ○○○○○○●○ ○ ○○○○○

Inside view of a hyperbolic 3-manifold 000 00000

・ロン ・四 と ・ ヨ と ・ ヨ と …

э.

Generic link

Isotopy for non-alternating links

Matthias Goerner

Triangulating a link complement 0000 00000000 0 00000

Inside view of a hyperbolic 3-manifold 000 00000

・ロン ・四 と ・ ヨ と ・ ヨ と …

э.

Generic link

Isotopy for non-alternating links

Matthias Goerner

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

(日) (同) (三) (三)

э

Geometric structure without removing finite vertices

Geometric structure without removing finite vertices

For the following 23 knots, Orb was able to find a geometric structure on the triangulation without the finite vertices removed:

K4a1	K10a89	K11n157	K12a868
K8a12	K11a266	K11n178	K12a875
K8a15	K11a269	K12a1019	K12a888
K9a29	K11a288	K12a1152	K12n837
K9a37	K11a302	K12a1188	K12n877
K10a121	K11a350	K12a1251	

Matthias Goerner

Triangulating a link complement

Inside view of a hyperbolic 3-manifold 000 00000

Simplification of triangulation

Simplification of triangulation

SnapPy simplifies/removes finite vertices by:

- 1. Performing 2-3/3-2 moves.
- 2. 2-0 move (fold two tetrahedra about an edge of order 2).
- 3. Ungluing a face and gluing in a "triangular pillow with tunnel".

Outline O	Triangulating a link complement 0000 0000000000 0 ●●000	Inside view of a hyperbolic 3-manifold 000 0 00000
Simplification of triangulation		

2-3 move

PL-homeomorphism between triangulations straightforward.

Matthias Goerner

2-0 move

The 2-0 move removes the red order-2 edge and identifies the two green edges and the faces spanned by the green and black edges (pairwise).

<ロ> <同> <同> < 回> < 回>

э

From now: use symmetry and only look at one half.

Matthias Goerner

Outline O	Triangulating a link complement ○○○○ ○○○○○○○○○○ ○○ ○○○●○	Inside view of a hyperbolic 3-manifold 000 0 00000
Simplification of triangulation		

2-0 move

Need to consider a neighborhood of the faces that get identified.

Ξ.

Thanks to Henry Segerman and Saul Schleimer.

Matthias Goerner

Triangulating a link complement 0000 000000000 0 0000●

Inside view of a hyperbolic 3-manifold 000 00000

Simplification of triangulation

Gluing in a "triangular pillow with tunnel"

Note: Figure shows one tetrahedron, SnapPy uses two. Source: Rubinstein, Segerman, Tillman, *Traversing Three-Manifold Triangulations and Spines*.

Matthias Goerner

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold •oo •oo •oo

Techniques

Technique 1: Draw (rasterize) universal cover

I implemented this using (fixed-function pipeline) OpenGL in 2000 for regular tessellations.

Matthias Goerner

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold ○●○ ○ ○ ○ ○

э

Techniques

Technique 2: Raytracing

Turner Whitted, An Improved Illumination Model for Shaded Display, 1979.

Matthias Goerner

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold oo oo oo oo

Techniques

Technique 2: Raytracing

Implemented as GLSL shader in OpenGL 3.2 for SnapPy.

Matthias Goerner

Triangulating a link complement 0000 0000000000 0 00000 Inside view of a hyperbolic 3-manifold

SnapPy Demo

Inside view of a hyperbolic 3-manifold

Available in one of the next versions of SnapPy:

M = Manifold("m015")
Might change to .fly()
M.inside_view() # For triangulation

M = Manifold("m003(-3,1)")
d = M.dirichlet_domain()
d.inside_view() # For Dirichlet domain

Thanks to: Henry Segerman et al for initial shader. Marc Culler for modern OpenGL support on Mac and Linux.

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold

Outlook

Technique 1 still has applications

Applications for illustration:

- 1. Prepare objects (such as geodesic) for raytracing.
- 2. 2d picture or 3d prints of tessellation by fundamental domains.

Applications for hyperbolic 3-manifolds:

- 1. Compute length spectrum.
- Compute maximal cusp area matrix (a_{ij}): neighborhoods of cusp i and j are disjoint if and only if the product of their areas ≤ a_{ij} (in writing, Goerner).

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold

<ロ> <同> <同> < 回> < 回>

3

Outlook

Technique 1: Bugs

Double drawing in my first OpenGL implementation: z-Fighting.

Matthias Goerner

Triangulating a link complement 0000 0000000000 0 00000 Inside view of a hyperbolic 3-manifold

Outlook

Technique 1: Challenges

Challenges:

- Enumerate each tile only once.
 Easiest: Check whether current tile is ε-close to any previous tile using some tree/hash table structure.
- Determine when enough tiles have been found.
 Easiest: Use some cut-off size/distance.

This is what Curtis McMullen's *lim* is doing.

Triangulating a link complement 0000 0000000000 0 00000 Inside view of a hyperbolic 3-manifold

(日) (同) (三) (三)

3

Outlook

Technique 1: Implementations

Challenges:

- Enumerate each tile only once.
 Elegant: Finite state machine, e.g., Jeremy Kahn's *Circle Limits* (akin to word acceptor of automatic structure).
- Determine when enough tiles have been found.
 Easiest: Use cut-off distance.
 Note: This is correct if using Dirichlet domain (used by, e.g., SnapPea kernel for length spectrum).

Triangulating a link complement 0000 000000000 0 00000 Inside view of a hyperbolic 3-manifold

Outlook

Technique 1: Verified Implementation

Challenges:

1. Enumerate each tile only once.

Easiest: Check whether current tile is ε -close to any previous tile using some tree/hash table structure. **Verified:** Let ε be radius of a ball contained in fundamental

domain. Use interval red-black tree.

 Determine when enough tiles have been found.
 Verified (without Dirichlet domain): Ensure all external/unglued faces outside of ball to be tessellated.

Goerner, Haraway, Hoffman, Trnkova, *Verified length spectrum* (in progress).